Split non-threshold Laplacian integral graphs
نویسندگان
چکیده
منابع مشابه
Integral Complete Split Graphs
We give characterizations of integral graphs in the family of complete split graphs and a few related families of graphs.
متن کاملCutwidth of Split Graphs and Threshold Graphs
We give a linear-time algorithm to compute the cutwidth of threshold graphs, thereby resolving the computational complexity of cutwidth on this graph class. Threshold graphs are a well-studied subclass of interval graphs and of split graphs, both of which are unrelated subclasses of chordal graphs. To complement our result, we show that cutwidth is NPcomplete on split graphs, and consequently a...
متن کاملLaplacian Integral Graphs with Maximum Degree 3
A graph is said to be Laplacian integral if the spectrum of its Laplacian matrix consists entirely of integers. Using combinatorial and matrix-theoretic techniques, we identify, up to isomorphism, the 21 connected Laplacian integral graphs of maximum degree 3 on at least 6 vertices.
متن کاملLaplacian Spectrum of Weakly Quasi-threshold Graphs
In this paper we study the class of weakly quasi-threshold graphs that are obtained from a vertex by recursively applying the operations (i) adding a new isolated vertex, (ii) adding a new vertex and making it adjacent to all old vertices, (iii) disjoint union of two old graphs, and (iv) adding a new vertex and making it adjacent to all neighbours of an old vertex. This class contains the class...
متن کاملThreshold graphs of maximal Laplacian energy
The Laplacian energy of a graph sums up the absolute values of the differences of average degree and eigenvalues of the Laplace matrix of the graph. This spectral graph parameter is upper bounded by the energy obtained when replacing the eigenvalues with the conjugate degree sequence of the graph, in which the i-th number counts the nodes having degree at least i. Because the sequences of eigen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2010
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081080802204584